An Inverse Optimal Control Approach for the Transfer of Human Walking Motions in Constrained Environment to Humanoid Robots
نویسندگان
چکیده
In this paper we present an inverse optimal control based transfer of motions from human experiments to humanoid robots and apply it to walking in constrained environments. To this end we introduce a 3D template model, which describes motion on the basis of center of mass trajectory, foot trajectories, upper body orientation and phase duration. Despite of its abstract architecture with prismatic joints combined with damped series elastic actuators instead of knees, the model (including dynamics and constraints) is suitable to describe both, human and humanoid locomotion with appropriate parameters. We present and apply an inverse optimal control approach to identify optimality criteria based on human motion capture experiments. The identified optimal strategy is then transferred to the humanoid robot for gait generation by solving an optimal control problem, which takes into account the properties of the robot and differences in the environment. The results of this approach are the center of mass trajectory, the foot trajectories, the torso orientation, and the single and double support phase durations for a sequence of multiple steps allowing the humanoid robot to walk within a new environment. We present one computational cycle (from motion capture data to an optimized robot motion) for the example of walking over irregular step stones with the aim to transfer the motion to two very different humanoid robots (iCub Heidelberg01 and HRP-2 14). The transfer of these optimized robot motions to the real robots by means of inverse kinematics is work in progress and not part of this paper.
منابع مشابه
A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملFrom human to humanoid locomotion - an inverse optimal control approach
The purpose of this paper is to present inverse optimal control as a promising approach to transfer biological motions to robots. Inverse optimal control helps (a) to understand and identify the underlying optimality criteria of biological motions based on measurements, and (b) to establish optimal control models that can be used to control robot motion. The aim of inverse optimal control probl...
متن کاملDynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کاملAnalytical Dynamic Modelling of Heel-off and Toe-off Motions for a 2D Humanoid Robot
The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. Then, using these trajectories and the inverse kinematics, the position tra...
متن کاملPSO-Based Path Planning Algorithm for Humanoid Robots Considering Safety
In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball, which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated para...
متن کامل